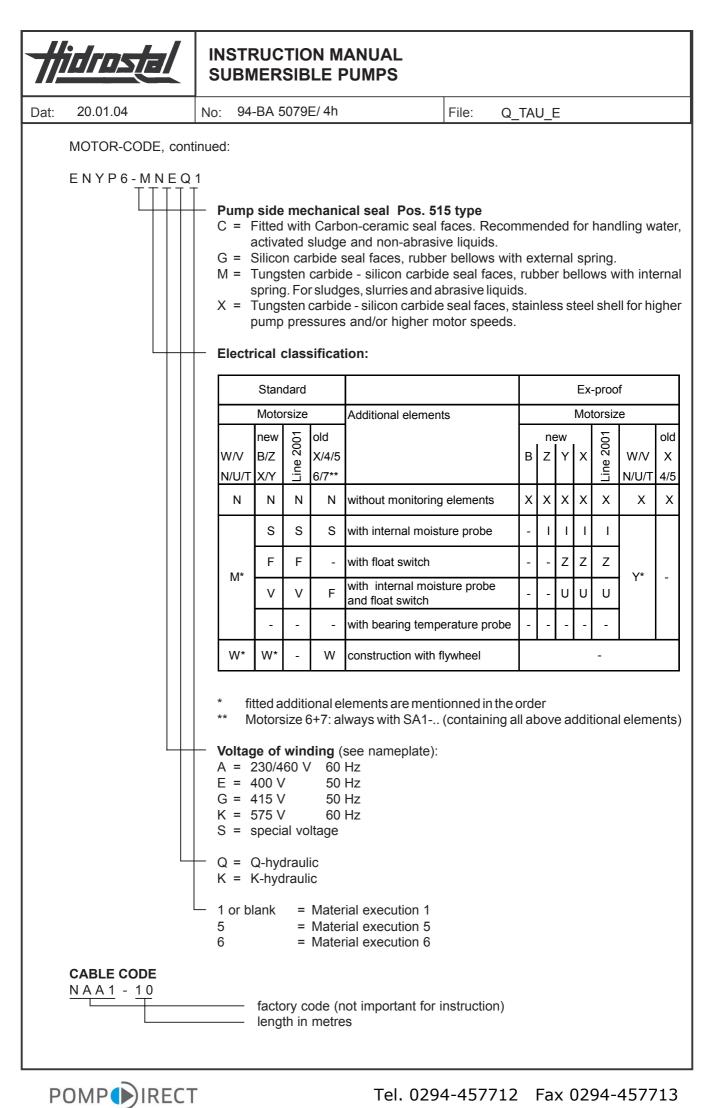


<u>Hidrostal</u>	INSTRUCTION MANUAL SUBMERSIBLE PUMPS	
Dat: 20.01.04	No: 94-BA 5079E/ 3e	File: Q_TAU_E

4. Any repairs must be made exactly as per instructions in this manual, and using only genuine HIDROSTAL replacement parts furnished through the HIDROSTAL distribution organisation. Use of any other parts will void the HIDROSTAL warranty.


Prior to shipment, each pump has been tested by the factory for proper mechanical and electrical operation as well as absolute water-tightness of the motor. Disassembly of the pump by other than official HIDROSTAL service centers may cause loss of any remaining warranty.

2.1.1 TYPE CODE EXPLANATION

MOTOR CODE

ass	embl	ed.		er of the C, D, E, F	-		size	to	which	n thi	s ma	otor (can I	be
lde	ntifica	ation	lette	r of the c	oolin	g ty	oe of	this	moto	or.				
Ν	=	Sub	mers	sible:	subr	nerg		ator	ansfe hous					
Mo	tor si	ze, a	ccore	ding IEC-	norm	IS:								
Line Typ IEC		002 - 80	003 B/Z 90	004 006 2/Y 100	007 - 112	014 3/X 132	020 - 160	- 4/W 180	030 - 200	- 5/V 225	090 N 250	130 6/U 280	- 7/T 315	30 S 35
Mo	tor co	onstru	uctio	n classific	atior	ı								
Mo	tor sp	beed												
									5	Nor 0 Hz		l spe 6(ed) Hz	
2 3 4 5 6 7 8 9		two 4 pc two 6 pc two 8 pc	ole m spee ole m spee ole m	ed, 2/4 po otor ed, 4/6-po otor ed, 6/8-po	les les			-	3000 1 1500 1000	500	0	3600 18 1800 12 1200	300	0

Tel. 0294-457712 Fax 0294-457713

1	/6 // 1	Irostal	INSTRUCTION MAN SUBMERSIBLE PUI			
Dat:		30.06.03	No: 94-BA 5079E/ 5c		File:	Q_TAU_E
	2.2	INSTALLATIO	NC			
	WE	T PIT PUMPS				
			al construction work must be pplied is sufficient for local co		re the pu	mp will be installed. Make sure
	or o cap	chain hoist over the acity of the crane ha	pump sump (or at least mal	ke sure that it he weight of th	could b e pump.	led to install a block and tackle e installed later on). The lifting There should be a water supply I from the sump.
<mark>(Ex</mark>)	Bef	ore installing any a	ccessories or the pump ensu	ire that the at	mospher	e is not potentially explosive.
	Dur	ing the installation of	of the pump make sure that the	e free ends of	the cable	es NEVER CONTACT WATER.
	2.2	.1 INSTALLATIO	ON OF PUMP GUIDE SYSTI	EM (Fig. 4)		II
	a)		guiderail bracket. Be sure to ce for sliding shoe.	up	per guide	rail bracket 🙀 chain hook
	b)	placed must be edischarge stand to place or expansion the guide rail pins of stand are vertica	the discharge stand is to be even and level. Fasten the o the sump floor with cast-in- n-type bolts and nuts so that or recesses on the discharge lly in line with (i.e. directly rail pins on the bracket.			
	c)	standard (or stain the correct lengt discharge stand Unbolt upper guide upper pipe ends ar	buld be made from galvanized less steel) pipe. Cut pipe to h. Put lower pipe ends in guiderail pins or recesses. e rail bracket. Insert pins into nd re-bolt it. Check to see that exactly vertical and parallel.	O-rin guide rail	g I	cable hook
	d)		e must be connected without ment to the discharge stand.	rubber seal		
		air must be vente dischargepiping(b	installed close to the pump, ed from the pump casing or before the check valve) during sure priming (Section 2.2.3,			discharge stand
	2.2	.2 PREPARATO	ORY CHECKS			Fig. 4
		ore lowering the put that:	ump into the sump check to			
	- 1 f - 1	The cable entry as firmly gripped by the The cables have no	e cable entry assemblies. t been damaged during trans	been damag	ed or loo nstallatio	ting eyes. osened and that the cables are n. Look especially for nicks and e cable will require replacement

of them.The cables are long enough and that they can follow the pump unhindered.

POMP

Tel. 0294

12.07.00

INSTRUCTION MANUAL SUBMERSIBLE PUMPS

Dat:

No: 94-BA 5079E/ 6b

- The cable ends have never come in contact with water.
- The rubber seal on the pump discharge is correctly seated in its groove, and is not damaged.
- The rubber seal is throughly greased.
- The direction of rotation is correct (Section 2.2.4, Fig. 6).

2.2.3 FLUSHING WATER CONNECTION

Pumps are supplied with a flushing water connection (service connection "F", Fig. 5).

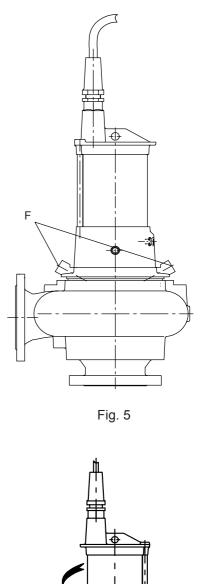
For normal sewage application this connection is not used. However, in special cases when pumping high concentrations of sludge or mud, it should be connected. It will conduct cleaning water between impeller and pump side mechanical seal (515), providing periodic removal of accumulated solids.

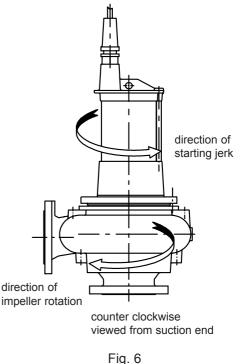
Flushing water must be pressure-regulated between 0,5 to 1 bar (7 to 14 psi) above pump discharge pressure. Water is controlled by a solenoid valve on a time clock. Adequate duration of each flushing is 60 seconds; frequently of flushing must be established for each different installation.

The quantity of flushing water varies according to pumpsize and application: in most cases, flow rates of 6-8 litres per minute will be sufficient.

Connection "F" may be used to manually bleed the air from the casing prior to start-up (Section 2.2.1d), if there is no other place for air to escape through the discharge piping.

2.2.4 DIRECTION OF ROTATION


Before lowering the pump into the sump, make electrical connections as indicated in Section 2.4.2 and check the direction of rotation. This must be counter-clockwise viewed from suction end. Check impeller rotation by suspending pump from the lifting eyes, resting inclined on the floor, and start up for one second. The starting jerk should be counter-clockwise viewed from driving side (Fig. 6).


This procedure must be repeated for each speed, if units are multi-speed pumps.

CAUTION:

4

If rotation is not correct on multi-speed or multi-pump installations, only change the pump cable leads of the pump or speed with wrong rotation at its starter in the control panel. DO NOT change the primary power leads coming into the control panel: This would change the rotation of all pumps or speeds.

1	idrostal	INSTRUCTION MANUAL SUBMERSIBLE PUMPS	-		
Dat:	30.06.03	No: 94-BA 5079E/ 7d	File:	Q_TAU_E	
	 Clear the sump bot Lubricate the rubbe Lift and move the pur steadily down to seat that is incorporated ir stand (after the pump 	mp to a position directly over the guides against the discharge stand. The sealing in the sliding shoe attached to the pump o is in position) by the pump's own weight the unfasten the chain from the lifting de	until the sliding g of mating faces discharge flang ght.	shoe fits correctly. Lower the pum is accomplished by the rubber sea e. This is pressed to the discharge	al e
		nust be fastened reliably to their retain n with severe destructive consequen t		y come loose they may be draw	n
4	2.3 START-UP				
<mark>Ex</mark> >	Prior to starting, check	 off-level is sufficiently high suction and discharge gate flood pump sump 	to prevent air er e valves are com		
	STARTING OF PUMP Never start pump again	nst closed valves (except non-return			
	readings with the name	anual operation. Measure the amperag eplate ratings. If amperage is more that g Troubles" chart (Section 2.5.1).			
	wetwell pumpdowns to c	as are complete, place the pump into aut observe that level controls are properly s ver switch (if included in control panel)	et and functionin	ig correctly. Observe that the alarn	
	Log date and hours me Section 2.6.	eter reading, and set pump for autom	atic operation. F	erform maintenance according t	0
		allowed to operate continuous-duty out charge pressure with high flow. Bearing			
	OPERATING TROUBL See chart, Section 2.5,				
4	2.4 ELECTRICA	L CONNECTION			
*	The electrical connection	on must be made by specialists in acco	ordance with loc	al specifications.	
<mark>Ex</mark> >	The explosion proof cla	ass of the pump is 🛛 🧲 🚱 🛛 II 2G	EEx d IIB T4.		
_	Switch boxes and pump protection equipment is	o control devices may not be mounted in a correctly connected.	n potentially expl	osive atmosphere. Ensure that the	е
	The motor winding lead	ds will be factory-connected according	specifications (s	ee nameplate).	
	Make sure that the now	er supply to the control panel is the sar	ne as on the our	np nameplates (tolerance +/- 5 %)).

Make sure that the power supply to the control panel is the same as on the pump nameplates (tolerance +/- 5 %). From 5 % to 10 % lower voltage, there may be a slight diminishing of hydraulic performance and a slight increase in amperage, but no harm to the motor. For voltages lower than 10 % of rating, severe performance drop and excessive draw (motor overheating and considerable operating problems) can be expected. The motor ratings shown on the nameplate are for ambient temperature (liquid and air) of up to 40° C. For higher temperatures, contact factory.

All electrical connections are made according to electrical diagram.

INSTRUCTION MANUAL SUBMERSIBLE PUMPS

Dat: 30.06.03

 Λ

4

No: 94-BA 5079E/ 8c

Q TAU E

File:

2.4.1 PANEL CONTROLS

2.4.1.1 OPERATOR SAFETY

Prior to any work on the pump, the power supply must be disconnected either by means of a locked isolator or by removing the fuses from the panel. It is not safe enough to switch off the control switch. A wiring mistake or a control system malfuction could put the motor back into operation.

2.4.1.2 MINIMUM REQUIREMENTS

The control panel must contain the following components:

- a) **Isolation switch**, preferably lockable.
- b) Slow trip fuses or circuit breakers in each incoming phase.
- c) **Lightning protection**. Lightning arrestor on each incoming phase, if there is any possibility of lightning damage.
- d) **Motor starter**. Full-voltage magnetic-contact starter has to be sized according to local electrical code requirements based on motor power rating.
- e) **Extra quick trip overload protectors**. They must be selected according to the amperage indicated on the nameplate. They must trip within 6 seconds on locked rotor condition (approximately 6 times full load amps) in order to adequately protect the motor windings; consult "trip curve" of overload protectors to ensure they meet this requirement.

CAUTION:

Warranty on submersible pump motor is void unless proper extra quick trip overload protectors are used on all motor phases. Claims for warranty repair of motors must include documentation that proper overload protectors have been installed.

f) Temperature sensor circuit. Each motor is manufactured with temperature limit switches in the winding-head (control leads 1 and 2). They are Bimetal type switches (similar to "Klixon"). They can be connected directly into the motor control circuit, as long as this circuit does not exceed 220/240 volts, 2,5 amps.

Explosion-proof submersible motors have in addition to the temperature limit switch a **temperature regulator** (control leads 1 and 3). This will disconnect 12 to 15° C before the temperature limit switches will disconnect.

For variable frequency driver (Section 2.1) the motors must be equipped with triple-thermistor according DIN 44082-S 150° C. For Ex-proof motors this is prescribed and may only be used with thermistor control units.

4

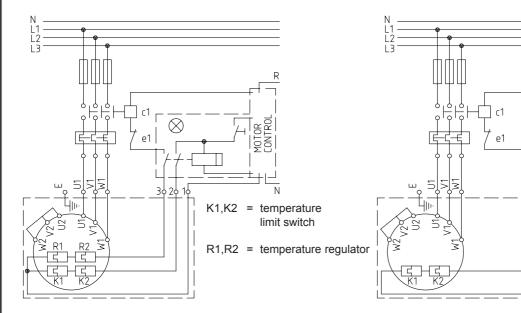
As alternative (special order) thermistors can also be used for normal motors. All motors equipped with thermistor have a label at the end of the cable with the following words:

ATTENTION! Semiconductor switch! More than 2.5 Volt destroies the motor winding!

CAUTION:

Warranty is void if these leads are not connected to immediately de-energize the motor when their circuit is opened due to internal motor malfunction or temporary overheating.

INSTRUCTION MANUAL SUBMERSIBLE PUMPS


Dat: 30.06.03

No: 94-BA 5079E/9d

Q TAU E

File:

g) Connections of the motor

EEx-proof execution

Ex

The control leads 1 and 3 (**temperature regulator**) can be connected in such a way that the motor can automatically re-start after the motor cools down and the circuit is re-closed. A motor overheated due to emergence from its cooling water can resume operation as soon as he is submerged.

The control leads 1 and 2 (temperature limit switch) have to be connected in such a way that the motor cannot automatically restart. The reason for the failure of the temperature controller circuit to disconnect first must be determined and corrected before the motor is put back into service.

Standard execution

The control leads 1 and 2 can be connected in such a way that the pump can automatically re-start after the motor cools down and the circuit is re-closed. A motor overheated due to emergence from its cooling water can resume operation as soon as he is submerged.

ATTENTION:

Note that the temperature sensors will only de-energize the motor when gradually overheated due to electrical malfunction. These devices are not a protection for quick temperature rise due to overload such as a locked rotor condition. They are **not** a sufficient substitute for the overload protectors specified in (e) above.

2.4.1.3 RECOMMENDED ADDITIONAL CONTROLS

- a) "Hand Off Automatic" switch.
- b) Low voltage terminals for level switches.
- c) Pump-on and pump-failure lamps.
- d) Hours run meter: Important to schedule service.
- e) Change-over switch for multiple-pump stations.
- f) **Alarm-system for high sump-level:** Preferably on a separate power supply, to ensure continued protection in the event of a main power supply failure.
- g) Moisture probe
- h) Float switch
- i) Bearing temperature probe

INSTRUCTION MANUAL SUBMERSIBLE PUMPS

30.06.03

Dat:

No: 94-BA 5079E/10e

/ 10e

Q_TAU_E

File:

2.4.2 CONNECTION TABULATION

Each cable set provides three or six power leads per speed, one earth lead and additional leads for temperature protection and seal failure circuits.

To connect the motor to the power supply it is not necessary to open it. This should be avoided in order to retain the original factory-hermetic seal.

If the sealing of the motor cover is disturbed, tightness tests must be performed as per Section 2.7.

Power leads of the motor are marked according to the following table:

MOTOR-TYPE	number of speeds	number of con- ductors (a)	speed (b)	winding connection (c)	end, a		n cable ing DIN norms
up to 4 kW, direct start	1	3+C+E		Y	U	V	W
over 4 kW star/delta start	1	6+C+E		Δ	U1 W2	V1 U2	W1 V2
two speed by Dahlander system Y/YY, direct start	2	6+C+E	N H	Y YY	1U 2U	1V 2V	1W 2W
pole change, each speed direct start	2	6+C+E	N H	Y Y	1U1 2U1	1V1 2V1	1W1 2W1
pole change, low speed: direct start,	2	9+C+E	Ν	Y 1)	1U1	1V1	1W1
high speed: star/delta start	2	9+0+2	Н	Δ	2U1 2U2	2V1 2V2	2W1 2W2
pole change, low and high speed with		40.0 -	N	Δ	1U1 1U2	1V1 1V2	1W1 1W2
star/delta start	2	12+C+E	Н	Δ	2U1 2U2	2V1 2V2	2W1 2W2

a) E = earth (yellow-green) C = control leads

for normal motors: * temperature protection circuit 1 to 2 seal failure circuit (optional) E to 4 for EEx (explosion proof) motors,
with two-level temperature
protection circuits: *1 to 3lowest, temperature regulator1 to 3highest, temperature limit switch1 to 2seal failure circuit (optional)see note

On EEx, seal failure circuit will always be in a separate cable originating near bottom of motor. * If in doubt whether motor is normal or Ex-proof refer to Section 2.1.1.

b) N = low speed

- H = high speed
- c) Y/YY = direct start (Dahlander) Δ = start possible by star/delta
 - 1) = the starting current at this speed is lower than the starting current at high speed by star/delta.

2.4.3 LEVEL SWITCHES

- Remark: Observe the relevant instructions for level controls in explosion proof installations.
- It is recommended to use an intrinsically safe circuit for the level controls, for explosion-proof installations.
- For the on and off levels, use control systems that are appropriate for the pumped liquid.
- Use a floating-ball type switch for the high-level alarm, even when there is another type used for the pump control (this has proven to be the most fail-safe type).
- The floating ball for the alarm should be placed at a reasonable distance above the highest pump start level to avoid false alarms.

2.4.4 LEVEL CONTROL

"ON" and "OFF" levels must be set in such a way as to provide sufficient sump capacity between "ON" and "OFF" so that the pump cannot be switched on more than 10 times per hour. Higher starting frequency may damage the motor control devices in the panel and will cause excessive power consumption. The following formula will calculate the required minimum sump capacity:

V	=	0.9 x Qp	V	=	sump capacity or volume, between on and off levels (in cubic meters)
		Z	Qp	=	pump flow for one pump (in litres per second)
			Z	=	number of starts per hour (Z = 10, maximum)

2.4.5 REQUIRED SUBMERGENCE

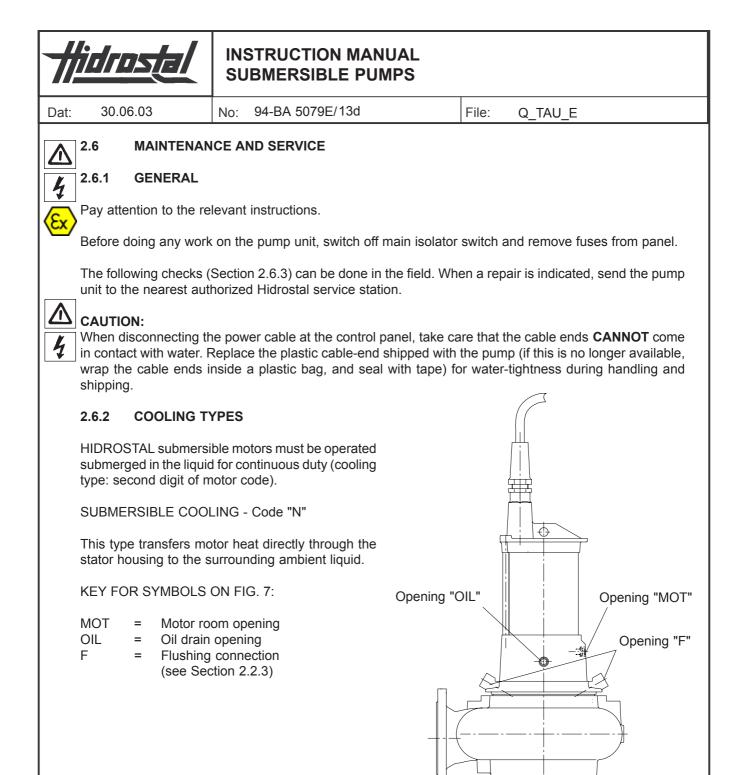
Hidrostal submersible motors are rated to operate continuously at maximum output kW, when **fully** submerged in liquid of 40° C or less. If pump design require the motor to operate without full submergence for long periods of time, use a Hidrostal "IMMERSIBLE" motor, with self-contained cooling. However, with a Hidrostal "SUBMERSIBLE" motor, it is permissible to place the shut off level **below** the top of the motor, to reduce sump depth and associated construction costs, if the following points are considered:

1) The exact time that a submersible pump will run without being submerged in cooling liquid, before the temperature control circuit trips out, is very difficult to predict (factors: ambient air and liquid temperature, hydraulically load of the motor, operating point on the pump-curve). The following times are maximum run times for a fully-loaded motor previously running fully submerged in 15° C liquid, and suddenly running in 40° C air:

Motor size B, Y:5 minutes dry run timeMotor size Z, X:7 minutes dry run timeMotor size 4/W, 5/V, 6/U, 7/T:9 minutes dry run time

The sump should be designed to ensure the pumps will not run dry longer than above, under normal conditions.

2) If the motor does run in air for a longer time (for example where sump inflow exactly matches pump discharge), he will be shut-off by its temperature control circuit with no harm to the motor. Ensure that there is sufficient sump volume to contain the incoming liquid during the time that the motor takes to cool down enough to re-start. Approximate cooling down times for various size motors are as follows (maximum liquid temperature of 15° C):


Motor size B, Y:	3	minutes to re-start
Motor size Z, X:	4	minutes to re-start
Motor size 4/W:	5	minutes to re-start
Motor size 5/V:	8	minutes to re-start
Motor size 6/U:	11	minutes to re-start
Motor size 7/T:	15	minutes to re-start

Care should be taken to avoid the production of vorticies and entrainment of air.

		SUBMERSIBLE PUMPS							
it: 3	0.06.03	No: 94-BA 5079E/ 12d	File:	Q_1	TAU_	E			
2.5 2.5	MAINTENAN								
\sim		in potentially explosive atmosphere must s carried out in a potentially explosive atmost							
POS	SIBLE REASONS	TROUBLE	No flow	Flow not sufficient	Head not sufficient	Reduction of flow or head after start up	Vibrations	Motor overload	
1.	Pump not sufficier	nt submerged, not vented	x						
2.	RPM too low		Х		X				T
3.	RPM too high						Х	X	
4.	Air entrance into	suction line	X	Х		Х	Х		T
5.	Discharge line clo	gged / Valve closed	X				Х	X	T
6.	Air or gas in pump	ped liquid	X	X	X	X	Х		t
7.	TDH too high (hig	her than calculated)	X	X			Х		t
8.	Suction head too	high				X	Х		t
9.	Insufficient suction	n head on hot liquids		X			Х		t
10.	Insufficient subme	ergence of suction	X	X	X	X	Х		╞
		tion higher than assumed		X	X			X	\uparrow
12.	Specific weight of	medium higher than assumed						X	T
13.	Impeller or suction	n line clogged	X	X			Х		T
	Wrong direction o		X	X	X				\dagger
	Impeller clearance			Х	X				\uparrow
	Damaged impelle			Х	X		Х		\uparrow
	Q .	s tripped; control switch off							╞
18.	Motor damage						Х	X	
	Low voltage			X	X			X	\dagger
	Attachments loos	9					Х		+
	Bearings worn ou						Х	1	\dagger
	Impeller out of ba						Х	1	\uparrow
	•	bt overflowed, or damaged							+
	Impeller too small	-			X				+
- • •	•	against suction cover			+		Х	X	+
25								X	+
	Thick sludge and	tight impeller clearance							

2.6.3 FIELD TESTS

2.6.3.1 VISUAL CHECKS AFTER PULLING PUMP UNIT FROM SUMP

- Check pump and motor for possible mechanical damage. Pay attention to the cable.
- If pump volume or pressure are not acceptable, check impeller clearance (see manual for hydraulic).
- Check overload relay, fuses and time relays (if any) for correct setting.
- Check correct function of level control.
- Check insulation resistance of motor windings and cables with a high-voltage ohm-meter ("megger"). This initial test should be made from the point where the cables attach to the motor starter. Check from each winding lead to the other two winding leads and to the ground lead.

Fig. 7

12.07.00

INSTRUCTION MANUAL SUBMERSIBLE PUMPS

Dat:

94-BA 5079E/14d No:

Q TAU E

File:

INSULATION CHART		
CONDITION OF MOTOR AND CABLES	OHM VALUE	MEGAOHM VALUE
A new motor.	2'000'000 (or more)	2
A used motor which can be re-installed in the well.	1'000'000 (or more)	1
MOTOR IN PIT. Ohm readings are for cable plus motor. A motor in the pit in reasonable good condition.	500'000 - 1'000'000	0.5 - 1.0
A motor which may have been damaged by lightning or with damaged leads. Do not pull the pump for this reason.	20'000 - 500'000	0.02 - 0.5
A motor which has wet or damaged cable or windings. The pump should be pulled soon and repairs made to the cable or the motor dried and replaced. The motor will not fail for this reason, but it will probably not operate for long.	10'000 - 20'000	0.01 - 0.02
 A motor which has failed or with completely destroyed cable insulation. The pump must be pulled and repaired or the motor replaced. The motor will probably not operate for long. The motor will not run in this condition. 	Less than 10'000 0	0 - 0.01 0

CAUTION:

 \wedge

Do NOT "Megger test" control leads when thermistors are fitted: Voltages over 2,5 V will cause thermistors to fail, and may destroy the winding.

Any reading less than 1.0 Megaohm could indicate failure of cable or winding insulation. If failure is indicated, remove pump with cable and proceed to Section 2.7 for further tests.

2.6.3.2 MOTOR HOUSING TEST

This test consists of a check on the condition of the motor side mechanical seal and/or motor housing "O"rings.

Stand pump vertically on its suction flange. Remove screw plug "MOT" (Fig. 7) with copper washer (536) so that any liquid can run out. Do the following repairs according to what comes out of the motor housings:

WATER MIXTURE WATER/OIL	}	General overhaul with change of bearings and seals
OIL NO LIQUID (DRY)		Change motor side mechanical seal (Pos. 516) Stator housing is OK. No defect.

CAUTION: \square

. . . . _ _ _ _

This screw plug must be completely watertight. Sealing surfaces must be clean and smooth before assembly. Heat new copper ring to dull red and immediately guench in water to soften copper ring for best seal. All copper rings supplied by Hidrostal are softened.

2.6.3.3 OIL CHECKING ON SUBMERSIBLE MOTORS

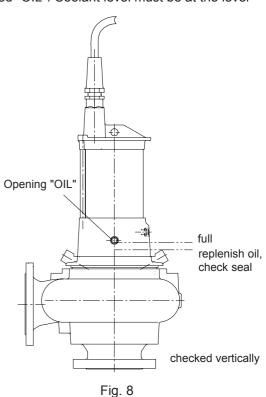
This is a check on the condition of the pump side mechanical seal. For pump units supplied with a moisture probe, total failure of the pump side seal will be indicated by activation of the resistance relay. However, even without this circuit, a slow failure can be detected earlier by the following oil check.

Oil checking must be done after the first 1'000 hours of operation and once a year thereafter.

Immediately before checking, run the pump for a few minutes to distribute any impurities throughout the oil. Raise the pump out of the sump and clean it with a water hose.

	drostal	INSTRUCTION MANUAL SUBMERSIBLE PUMPS			
Dat:	30.06.03	No: 94-BA 5079E/15e	File:	Q_TAU_E	

Oil level check


Stand pump with shaft vertical, and remove screw plug marked "OIL". Coolant level must be at the level of opening "OIL".

If coolant is far below this level, the pump side mechanical seal may have leaked and may require replacement (Section 2.9.1). If oil level is only a small amount below this level, proceed with following test. Top-up with new oil and re-check in 200-500 hours (Fig. 8).

Oil quality check

Lay pump down horizontally with opening "OIL" (536) upwards. Remove screw plug "OIL". Insert a tube or rubber hose, place of a finger over top of tube and remove it with a small sample. Repeat until a sufficient quantity has been collected for observation. Evaluation will show one of three conditions:

- a) If oil is clear there are no problems with the pump side seal. Fill oil back in again with pump vertical to the level of opening "OIL" and close with screw plug and a new softened copper seal ring.
- b) If there is just a little water in the oil but the oil is clear, repair of the pump is not necessary. Remove oil and separate water from oil (Section 2.6.3.4).

Pour back the clean oil into the mechanical seal housing

and close opening "OIL" with screw plug and softened copper seal ring (536). However, check oil quality again after 500 hours of operation.

With a new mechanical seal (515) it is possible that during the run-in period a small amount of water could enter into the oil chamber. Thus, if at the first check after start-up a small quantity of water is detected, it can be neglected.

Oil with a small amount of water will be milky in appearance, but will still be of very low viscosity, that is, it will still run much more freely than motor oil, almost as thin as kerosene.

c) If too much water has entered the oil, the viscosity will be much higher, then oil will be as thick as motor oil or even thicker. In this case, or when sludge or sewage smell are detected in the oil, the pump side mechanical seal (515) must be repaired or replaced.

Replace oil with new oil only if strongly contaminated, otherwise separate water from oil and re-use oil. Required oil must be extremely low viscosity. Factory uses the following oil:

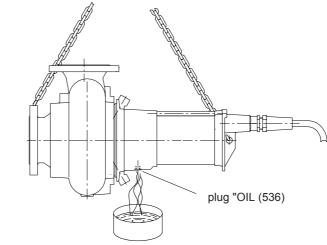
\triangle

Specific gravity at 20° C	0,812	g/ml
Viscosity at 40° C	3,5	mm2/s (cst)
Solidification point	-38,0	°C
Flash point	132,0	°C
Burning point	142,0	°C
Evaporation energy	251,0	kJ/kg
Solubility in water	none	-

Other recommended oils:

Shell Pella A or S5585, Gulf mineral seal oil 896 or others with equal specification. The specified low viscosity is very important for proper cooling.

If another oil is used the consistency with the used elastomers must be checked.


Hidrostal		INSTRUCTION MANUAL SUBMERSIBLE PUMPS			
Dat:	30.06.03	No: 94-BA 5079E/ 16d	File:	Q_TAU_E	

2.6.3.4 OIL CHANGE

Remove screw plug "OIL" (536) and drain oil chamber casing (504) completely, by turning the pump around slowly until opening "OIL" is upside down (Fig. 9). On larger motor sizes there may be another screw plug directly below the opening "OIL" on the back cover (507). Removing this plug will help remove the last bit of oil.

When the oil chamber casing is completly empty stand pump vertically on suction flange and refill with separated oil or new oil. The correct level is reached when the oil is at the bottom of opening "OIL".

Re-install screw plug "OIL" with softened copper seal ring.

2.6.4 GREASING INSTRUCTIONS

Fig. 9

Hidrostal motors use bearings which are grease lubricated. For re-lubrication, grease is handpacked into the bearings when the motor is disassembled during a major overhaul. Sufficient grease is provided initially and at each overhaul to allow for the number of operating hours between overhauls ("Overhaul Chart", Section 2.8). The overhaul should be done by an authorized Hidrostal service center.

CAUTION:

The overhaul of Ex-proof-motors must be done in the factory or in an authorized Hidrostal service center, otherwise the Ex-certification will be invalidated.

No other lubrication service is required between overhauls for these motors.

For regreasing we recommend:

STABURAGS NBU 8 EP by Kluber-Lubrication.

This grease is of a mineral oil base containing a barium complex as thickener.

Typical characteristics:

Colour Apparent dynamic visco. (approx.) Operating temperature range Max. temperature (short time) Consistency class (NLGI) Penetration DIN ISO 2137 (0.1 mm) Dropping point DIN ISO 2176 Corrosion protection DIN 51802 RPM-parameter (n x d m)	beige 6000 -30150 170 2 280 > 220 0 5 x 10 ⁵	mPas ° C ° C ° C
--	---	---------------------------

INSTRUCTION MANUAL SUBMERSIBLE PUMPS

Dat: 10.03.98

Δ

No: 94-BA 5079E/ 17b

File:

2.7 MOTOR CABLES

Whenever opening motor housing, it is imperative that all O-rings have to be replaced with new items supplied from HIDROSTAL. O-rings glued-up from bulk stock are totally unsatisfactory for this critical application; the glued joint will inevitably leak water into the motor after a short time.

If tests conducted through the cables in the field (Section 2.6.3.1) showed insufficient insulation resistance, and if humidity relay has not tripped (continuity exists between lead 1 and 2), it can be assumed that the insulation failure is in the cable rather than in the stator. Remove fasteners (509) and carefully lift off cable cover.

Cut the leads between cable and winding and now make a separate "megger" test on cable and winding. If windings are at fault, send the entire motor to the nearest authorized Hidrostal service station. If cable is at fault, a new cable set can be installed.

2.7.1 RE-CONNECTION OF CABLE

Place O-ring (525) into position around the seal face on cover (500). Cables should be re-connected to the winding leads, using new insulated splices. Take care that this insulation is rated for 110° C.

2.7.2 TEST FOR LEAKS

Before putting the pump back into operation after opening of the motor (as when changing cables), a test for leaks should be carried out as follows:

Connect source of dry air (from air compressor or bicycle hand pump) to opening left by removal of screw plug "MOT" (Fig. 7). Air pressure should be a maximum of 0.5 bar (7 psi). Motor should then be totally submerged in a test tank.

CAUTION:

4

Do not immerse loose end of cables.

If any continuously escaping bubbles are detected, motor cover is not water-tight. The preceding procedure for cable installation should be repeated to eliminate leaks.

INSTRUCTION MANUAL SUBMERSIBLE PUMPS

Dat: 30.06.03

No: 94-BA 5079E/ 18g

Q_TAU_E

File:

2.8 OVERHAUL CHART

CAUTION:

The overhaul of Ex-motors must be done in factory or in a authorized Hidrostal service center, otherwise the Ex-certification will be invalidated.

Motor	motor-	pump-	seal	hours	Motor	motor-	pump-	seal	hours
type	side	side	oil	between	type	side	side	oil	between
51	seal	seal	lit.	regreasing		seal	seal	lit.	regreasing
BNBA2	25	20	1.0	20'000	IN6S4	95	3	45.0	20'000
BNZK2	25	20	1.0	20'000	INUT4	95	3	43.0	20'000
BNZR2	25	20	1.0	20'000	IN7T4	100	100	47.0	18'000
BNZY2	25	20	1.0	30'000	INTT4 / INTZ4	100	100	47.0	18'000
CNBA2	25	20	1.0	30'000					
CNZR2	25	20	1.1	20'000	DNYK6 / DNYS6	1 1/2	1 1/8	1.2	35'000
CNZY2	25	20	1.1	20'000	ENYS6 / ENYT6	1 1/2	1 1/8	1.2	35'000
CNYS2	1 1/2	1 1/8	1.5	20'000	ENXA6 / ENXR7	1 1/2	1 1/2	3.8	50'000
CNYT2	1 1/2	1 1/8	1.5	30'000	FNXT6 / FNXT7	2	2	6.0	50'000
DNYS2	1 1/2	1 1/8	1.2	20'000	FNXZ6 / FNXZ7	2	2	6.0	50'000
DNYT2	1 1/2	1 1/8	1.2	20'000	FN4A6	2	2	9.0	50'000
DNXA2	1 1/2	1 1/8	3.6	25'000	FNWA6 / FNWB6	2 1/2	2	12.0	50'000
DNXB2	1 1/2	1 1/8	3.6	25'000	HN4B6 / HN4S6	2 1/2	2	14.0	50'000
DNXK2 / DNXL2	1 1/2	1 1/8	3.6	25'000	HNWB6 / HNWS6	2 1/2	2	14.0	50'000
DNXT2	2	1 1/2	4.0	25'000	HN5B6	3	3	22.0	45'000
DNXQ2 / DNXQ3	2	1 1/2	4.0	25'000	HNVB6	3	3	19.0	45'000
DNXZ2	2	1 1/2	4.0	25'000	HN5S6 / HN5SV	3	3	22.0	45'000
DNXW2	2	1 1/2	4.0	25'000	HNVS6 / HNVSV	3	3	19.0	45'000
DNWS2	2 1/2	1 1/2	9.0	25'000	IN5S6	3	3	35.0	45'000
EN5S2	3	2	18.0	20'000	INVS6	3	3	22.0	45'000
ENVS2	3	2	13.0	20'000	INNT6	3	3	25.0	35'000
					IN6S6 / INUC6	95	3	45.0	35'000
BNBA4	25	20	1.0	30'000	INUT6	95	3	43.0	35'000
BNZK4 / BNZR4	25	20	1.0	30'000	LN7C6 / LN7T6	100	100	47.0	35'000
CNBA4	25	20	1.0	30'000	LN7Z6	100	100	49.0	35'000
CNZK4 / CNZR4	25	20	1.1	30'000	LNTT6 / LNTZ6	100	100	49.0	35'000
CNZY4	25	20	1.1	30'000	LNTZV	100	100	49.0	35'000
DNBA4	25	20	0.9	30'000					
DNYK4	1 1/2	1 1/8	1.2	30'000	DNYK8 / DNYT8	1 1/2	1 1/8	1.2	35'000
DNYS4	1 1/2	1 1/8	1.2	30'000	ENYS8 / ENYT8	1 1/2	1 1/8	1.2	35'000
DNYT4	1 1/2	1 1/8	1.2	35'000	FNXTW	2	2	6.0	50'000
DNXA4	1 1/2	1 1/8	3.7	35'000	FNXT8 / FNXZ8	2	2	6.0	50'000
ENYT4	1 1/2	1 1/8	1.2	35'000	FNXZ9	2	2	6.0	50'000
ENXA4 / ENXB4	1 1/2	1 1/2	3.8	45'000	HN4B8 / HN4S8	2 1/2	2	14.0	50'000
ENXK4 / ENXO4	1 1/2	1 1/2	3.8	45'000	HNWB8/HNWS8	2 1/2	2	14.0	50'000
ENXR4 / ENXR5	1 1/2	1 1/2	3.8	45'000	HN5B8	3	3	22.0	45'000
ENXW4	2	1 1/2	4.7	45'000	HNVB8	3	3	19.0	45'000
ENXY4 / ENXY5	1 1/2	1 1/2	3.8	40'000	IN5B8 / IN5S8	3	3	35.0	
ENXZ4	2	1 1/2	4.7	40'000	INVB8 / INVS8	3	3	22.0	45'000
ENWB4	2 1/2	2	10.0	40'000	INNTW / INNT8	3	3	25.0	40'000
FNXT4	2	2	6.0	40'000	IN6S8	95	3	45.0	30'000
FNXW4 / FNXZ4	2	2	6.0	40'000	INUC8	95	3	43.0	30'000
FN4B4 / FN4C4	2 1/2	2	12.0	40'000	LN6S8	95	3	45.0	30'000
FN4S4 / FN4T4	2 1/2	2	12.0	30'000	LNUCW / LNUC8	95	3	43.0	30'000
FNWB4 / FNWS4	2 1/2	2	12.0	40'000	LN7C8 / LN7T8	100	100	49.0	30'000
FN5B4	3	2	20.0	35'000	LNTT8 / LNTZ8	100	100	49.0	30'000
FNVB4	3	2	17.0	35'000		4.1/2	4.110		501000
FN5V4	3	3	20.0	30'000	ENXRA	1 1/2	1 1/2	3.8	50'000
HN5C4 / HN5T4	3	3	22.0	35'000	HNXTA / HNXZA	2	2	8.0	50'000
HNVC4 / HNVT4	3	3	19.0	35'000	INVBA / INVSA	3	3	22.0	50'000
HNNT4	3	3	19.0	35'000					
HN6S4 / HN6SU	95	3	26.0	20'000					
HNUC4 / HNUT4	95	3	24.0	20'000					

20.01.04

INSTRUCTION MANUAL SUBMERSIBLE PUMPS

Dat:

No: 94-BA 5079E/ 19e

Q_TAU_E

File:

Motor type	motor- side	pump- side	seal oil	hours between	Motor type	motor- side	pump- side	seal oil	hours between
ype	seal	seal	lit.	regreasing	type	seal	seal	lit.	regreasing
DN002X2	25	20	π ι .	25'000		Seal	Seal	ш.	regreasing
DN002X2	25	20		45'000					
DINUUZA4	25	20		45000					
DN003X2	25	20		25'000					
DN003X4	25	20		45'000					
DN004X2	1 1/8	1 1/8		25'000				-	<u> </u>
DN004X4	1 1/8	1 1/8		45'000					
DN006X2	1 1/8	1 1/8		25'000			_		
DN006X4	1 1/8	1 1/8		45'000					
DN007X2	1 1/8	1 1/8	2.0	25'000			1		+
(DN112X2)	1 1/8	1 1/8	2.0	25'000					
DN007X4	1 1/8	1 1/8	2.0	25'000					
	4.4/0	4.4/0	1.0	051000				_	
DN014X2	1 1/2	1 1/8	4.0	25'000			+		+
(DN132X2)	1 1/2	1 1/8 1 1/2	4.0	25'000				_	
EN014x4	1 1/2		4.0	45'000				_	
(EN132x4)	1 1/2	1 1/2	4.0	45'000			-	_	
DN020X2	2	1 1/2		25'000					
EN020X4	2	1 1/2		45'000					
(EN160X4)	2	1 1/2		45'000					
FN020X6	2	1 1/2		45'000					
DN030X2	2	1 1/0		25'000			_	_	
FN030X4	2	1 1/2 2	-	45'000				_	
			-						
HN030X6 HN030X8	2	2	-	45'000 45'000					
	2	2		45000					
								_	
			-					_	
			-					_	
				├ ───┤					┨────
				<u> </u>					+
									_
			-	┝────┤				-	
		1					1		1

ਵਿ

σ

File:

20.01.04 Dat:

94-BA 5079E/ 20g No:

Q TAU E

546

7

0

Fig. 10

Fig. 11

2.9 ASSEMBLY / DISASSEMBLY

2.9.1 **REPLACEMENT OF MECHANICAL SEAL**

2.9.1.1 REMOVAL OF PUMP SIDE MECHANICAL SEAL (515)

a) Exposed-spring seal - type "C" (Fig. 10)

Remove snap ring (Seeger, 546), then remove spring. Make sure that the shaft is free of burrs and has no sharp edges so that the rubber parts of the seal cannot be damaged as they are removed. Oil the shaft for ease of disassembly. Now the seal rotating parts can be pulled off the shaft by hand.

b) Rubber-bellows seal, internal spring - type "M" (Fig. 11)

Remove retaining ring "A" from the rubber bellows of the seal by gently prying with two screwdrivers on opposite sides, between the rubber bellows and the retaining ring (Fig. 12).

CAUTION:

Use only dull-edged screwdrivers since sharp edges could cut the rubber bellows. Do not twist screwdriver, as this can puncture rubber bellows.

Rather, lay some convenient object onto back cover or seal plate, to act as a fulcrum for each screwdriver, and pry ring directly up away from rubber bellows (Fig. 12).

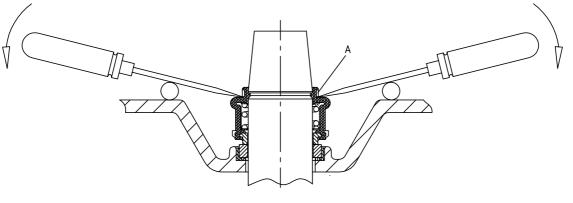
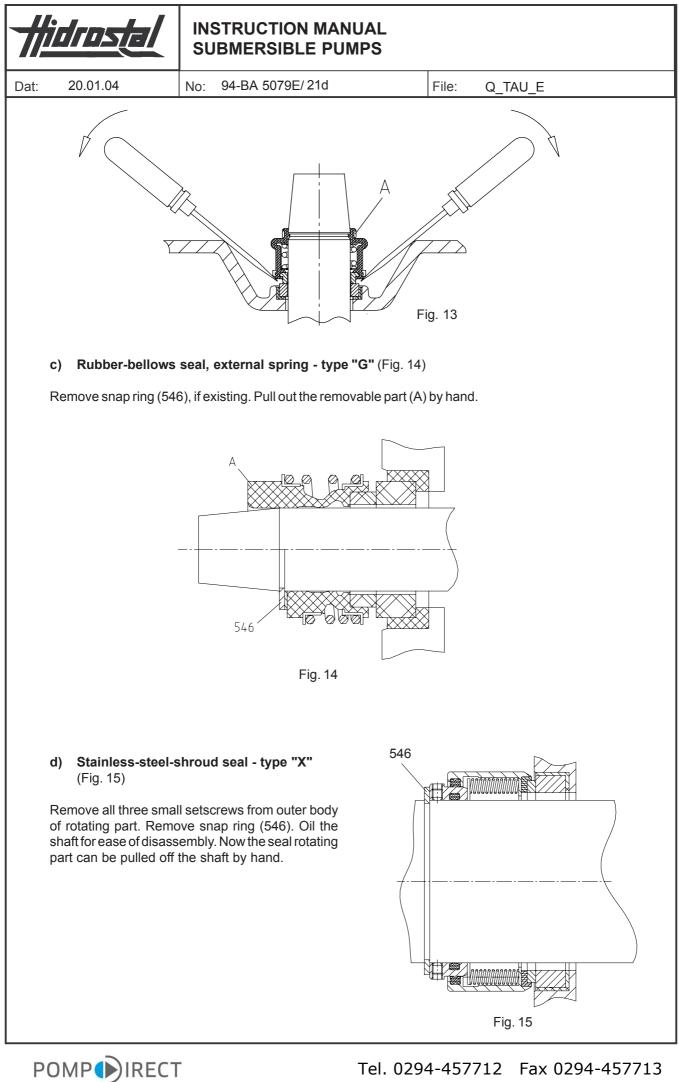



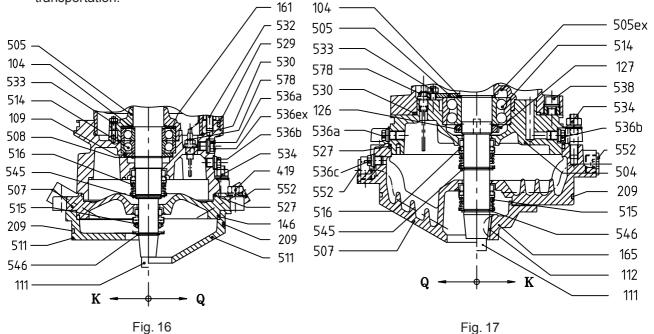
Fig. 12

Make sure that the shaft is free of burrs and has no sharp edges so that the rubber parts of the seal cannot be damaged as they are removed. Oil shaft and bellows for ease of disassembly. Gently insert a screwdriver between the shaft and the rubber bellows.

By lifting and turning the screwdriver around the shaft, the lip of the rubber bellows can be lifted out of the shaft groove. Once the bellows is free of the groove, the entire rotating part of the seal with bellows can be pulled off the shaft. If necessary, use two screwdrivers deep into the seal to pry the seal face loose (Fig. 13).

Tel. 0294-457712 Fax 0294-457713

e) Stationary seat (all types)


(Fig. 16 and 17)

Remove static part of the mechanical seal as follows:

Unfasten nuts (534) and carefully remove back cover or mechanical seal plate (507) from oil chamber casing. Make sure that the static part of the seal (515) does not hit the shaft so that the ring can't be damaged.

Now the static part of the seal can be carefully pushed out of the chamber from the back side.

Some HIDROSTAL seals can be repolished or repaired (Consult nearest service center). When sending a seal for inspection or repair, it is important to thoroughly protect the seal faces to prevent damage during transportation.

2.9.1.2 MAINTENANCE OF MOTOR SIDE MECHANICAL SEAL (516)

It is **IMPORTANT** to note that removal of this seal should not be attempted in the field. If leakage of this seal has been detected from the motor housing test as described in Section 2.6.3.2, the entire motor should be sent to the nearest authorized HIDROSTAL service center for a complete inspection.

2.9.1.3 ASSEMBLY OF BACK COVER

Cleanliness is of utmost importance for this assembly work! All parts must be washed in solvent before assembly. All machined mating surfaces must be clean and free from burrs. All grooves and seatings for "O"-rings and other static seals must be inspected for nicks or scratches. All threads must be clean especially those in holes for studs. All "O"-rings MUST be replaced with new ones and they should be lubricated with light oil prior to assembly.

WARNING:

Λ

//\

Never use "O"-rings glued from "O"-ring stock. Our experience is that this glue joint will inevitably leak.

Place a new "O"-ring (527) on the oil chamber casing (504). Carefully assemble back cover or mechanical seal plate (507) to the oil chamber casing and fasten with fastening set (534).

INSTRUCTION MANUAL SUBMERSIBLE PUMPS

Dat: 20.01.04

No: 94-BA 5079E/ 23f

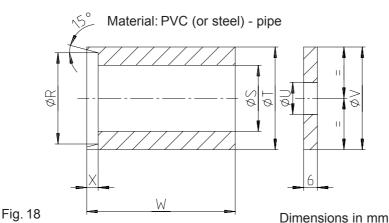
3f

Q_TAU_E

File:

2.9.1.4 ASSEMBLY OF PUMP SIDE MECHANICAL SEAL

a) Stationary seat (all types)

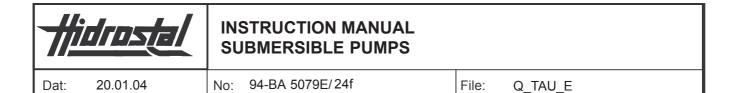

Lubricate the rubber circumference of the static mechanical seal part and carefully press all the way into its seat in the back cover or mechanical seal plate (507). The ring must fit tightly in place. Protect the seal face during this operation. Examine gap between shaft and inner diameter of seal face; when face is correctly installed, gap will be uniform all the way around.

WARNING:

 \bigwedge

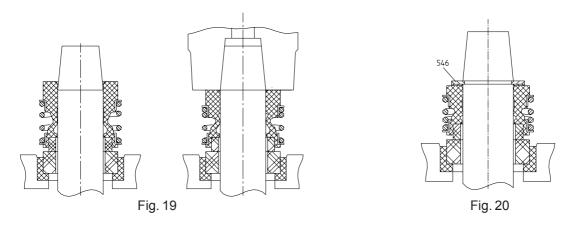
The seal face is very brittle, and can easily snap unless pressure is uniform during installation. We suggest pushing in with special tool (Fig. 18).

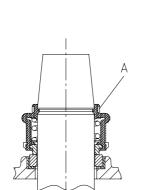
Make sure that the shaft is free of burrs and has no sharp edges, so that the rubber part or the mechanical seal cannot be damaged. File groove edges if necessary.


Seal φS φT φU φV W Х Bolt size φR "Q"| "K" "K" "Q" size 20 32 +/-1 21 +1/-0 38 +/-1 12 40 60 5 M10 1 1/8" 40 +/-1 29 +1/-0 45 +/-1 14 12 50 65 5 M10 M12 50 +/-1 18 5 1 1/2" 39 +1/-0 55 +/-1 14 60 75 M12 M16 5 2" 65 +/-1 51 +1/-0 70 +/-1 22 18 80 95 M20 M16 80 +/-1 64 +1/-0 29 5 2 1/2" 85 +/-1 90 150 M27 _ 29 5 3" 92 +/-1 77 +1/-0 100 + / - 128 110 170 M33 M27 5 100 110+/-1 102+1/-0 120+/-1 44 38 130 350 M42 M36

b) Exposed-spring seal - type "C"

Remove spring and spring retaining ring of mechanical seal. **Seal surfaces must be absolutely clean!** Place a few drops of light oil on the rotating (carbon) face of the mechanical seal, then lubricate inner bore of rubber part of the seal with oil and put a small amount of oil onto shaft. Install rotating face (with its rubber part) over shaft, and press gently down length of exposed shaft until carbon face touches stationary face. It may help to use a small wood "pusher" or a plastic pipe mandrel only slightly larger than shaft diameter, to push directly on the rubber part of the seal (Fig. 18). Be sure rubber part sits uniformly on shaft, and has *NOT* rolled out from under the metal part of the seal. Put on seal spring, and spring retaining ring.


Install snap ring (Seeger, 546) and turn shaft by hand to check for free running.


c) Rubber-bellows seal, external spring - type "G"

Wet the rotating part of the mechanical seal with soapy water. Push the whole assembly by hand over the shaft as far as possible. On size 20 mm (Fig. 19) final assembly by installing of impeller. On other sizes (Fig. 20) secure with snap ring (546).

d) Rubber-bellows seal, internal spring - type "M"

Lubricate the rotating part of the mechanical seal, position the retaining ring "A" on the rubber bellows (Fig. 21). Push the whole assembly by hand over the shaft as far as possible. Mount the special tool over the shaft tip (Fig. 22), and compress the mechanical seal until the lip of the rubber bellows is engaged in the shaft groove. Remove special tool. Turn the shaft by hand and watch that the retaining ring turns perfectly in line with the rubber bellows and that it is not cocked. Then try to pull the rubber bellows off shaft by hand to make sure that the lip has reliably engaged in the shaft groove.

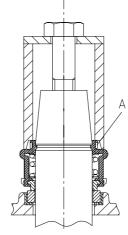
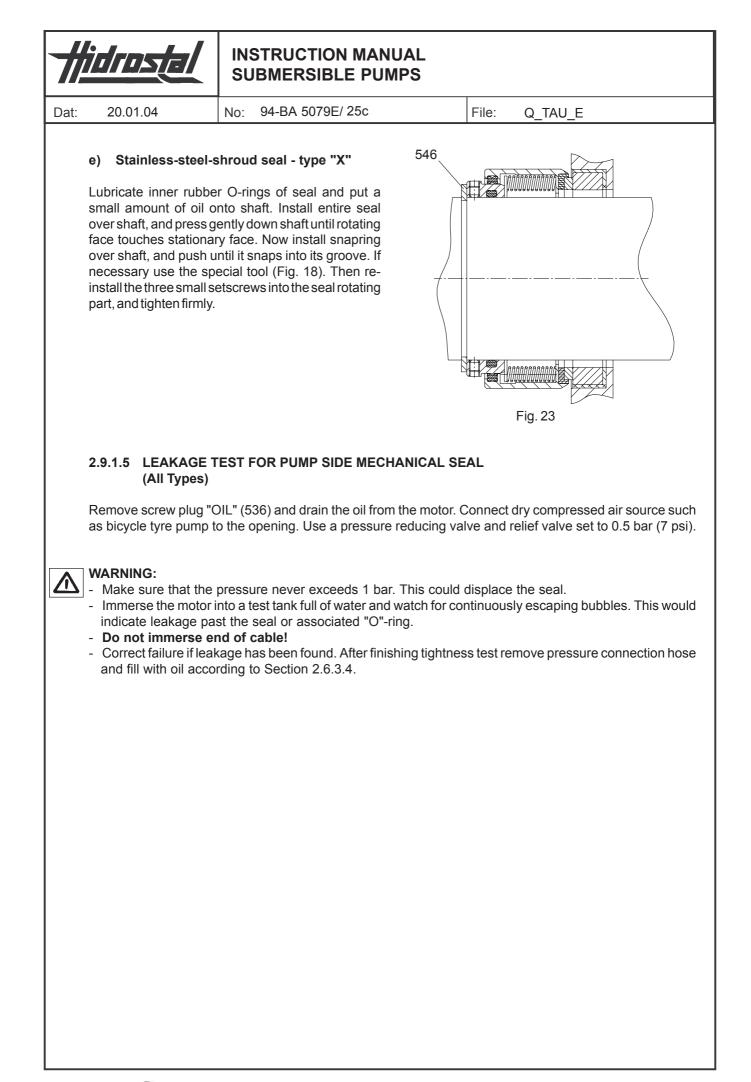



Fig. 22

Fig. 21

